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 A B S T R A C T

Hop (Humulus lupulus L.) cones ripening is characterized by a gradual increase of the valuable brewing 
metabolites, namely bitter acids and essential oils (EOs), thus making the identification of the optimal harvest 
time pivotal to obtain high quality yields and avoid economical losses. Cone ripeness is currently evaluated 
visually: Smart Agriculture (SA) technologies, including the Internet of Things (IoT) paradigm and Machine 
Learning (ML) models, are expected to have a significant impact on it. In this work, IoT devices are employed 
to collect data in the time period 2021–2023 at the ‘‘Azienda Agricola Ludovico Lucchi’’ hop testbed located 
in Campogalliano, Modena, Italy. Two ML-based algorithms are proposed to forecast the optimal harvesting 
period: the first relies on Multiple Linear Regression (MLR), while the second exploits Principal Component 
Regression (PCR). Finally, both algorithms classify ripening stages (namely: immature, mature, overripe) through 
a soft voting classifier. To this end, the identification of the optimal ripening time required the hop cones to be 
morphologically and chemically characterized (approximately) weekly for three growing seasons. Our results 
indicated that during the first half of September, there was a contraction in cone width and an increase in 
the EOs content, representing the optimal harvest maturity. Finally, the proposed ML models forecasted the 
optimal harvesting period for the 2024 season in the same days and this was confirmed in the reality. The 
correspondence between predictions and analytical results highlights the potential of integrated IoT and ML 
techniques to provide decision support for farmers and to improve agricultural operations.
1. Introduction

Hop (Humulus lupulus L.) is a climbing, perennial and dioecious 
plant whose female inflorescences, usually called ‘‘hop cones’’, are 
widely used in the brewing industry because of the presence of a 
yellowish resinous substance, named lupulin, rich in secondary metabo-
lites. Hop resins and essential oils (EOs), providing bitterness and 
aroma to the beer, respectively, are the most valuable brewing com-
pounds, with the first ones representing the highest concentration of 
all active ingredients in the cones (Skomra and Koziara-Ciupa, 2020).

To this end, the bitter acids (5–20% of the cone dry weight) are 
the most important components of the hop resins and can be dis-
tinguished into 𝛼-acids and 𝛽-acids (Zanoli and Zavatti, 2008). The 
𝛼-acids (humulones), consisting of a mixture of six humulone homologues 
(mainly Humulone, Cohumulone and Adhumulone), most affect the 
price and quality of hops because of their isomerization capacity during 
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the wort-boiling due to high temperature and pH values (Zanoli and 
Zavatti, 2008; Rybka et al., 2017). In fact, the iso-𝛼-acids are more 
water soluble and bitter compared to the not-isomerized form and, 
therefore, are the main responsible of the beer bitterness (Zanoli and 
Zavatti, 2008; Intelmann and Hofmann, 2010; Karabín et al., 2016). In-
stead, the 𝛽-acids (lupulones), unable to isomerize because of structural 
differences, contribute less to the bitter taste of beer, but exert a greater 
antimicrobial activity (Schönberger and Kostelecky, 2011; Almaguer 
et al., 2014; Krofta and Mikyska, 2014). The hop EOs (0.5–3% of 
the cone dry weight) are a complex mixture of over 1000 volatile 
compounds that, based on their concentration and ratios, can impart 
herbal, citrusy, fruity or the typical hoppy aromas (Schönberger and 
Kostelecky, 2011; Pearson et al., 2016; Raut et al., 2021).

The biosynthesis and the accumulation of bitter acids and EOs 
start with cone development and continue with significant variations 
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during cone maturation (Bailey et al., 2009). For instance, Skinner 
et al. (1974) observed a gradual increase in oil and bitter acids during 
the maturation process and similar findings have been confirmed by 
recent literature (Bailey et al., 2009, Sharp et al. 2014, Matsui et al.
2016, Lafontaine et al. 2019). Therefore, identifying the optimal ripen-
ing time is fundamental to achieve high-quality production. Avoiding 
both early and late harvesting is crucial: early harvesting prevents 
bitter acids and essential oils from reaching their ideal concentrations, 
while late harvesting may lead to the degradation of aroma compounds, 
discoloration, and an increased risk of exposure to pests and diseases, 
ultimately resulting in reduced storability (Darby et al., 2017, Skomra 
and Koziara-Ciupa 2020). Besides, although hop harvesting is now 
mostly performed using picking machines, it must be completed within 
a 2-week window during which quality parameters are stable: this 
process may be complicated by the simultaneous ripening of other 
varieties (Bailey et al., 2009, Sirrine et al. 2010).

In this context, the Smart Agriculture (SA) concept could offer 
valuable, precise, and efficient tools to assist farmers and could op-
timize processes, such as harvest, through the use, integration, and 
development of advanced technologies, such as Internet of Things (IoT) 
and Machine Learning (ML). In particular, the term IoT identifies a 
heterogeneous set of technologies enabling real-world objects to com-
municate with each other and with the internet, gathering data from 
the environment they are deployed in and processing them according 
to specific tasks and applications (Atzori et al., 2010). Therefore, IoT 
systems are beneficial for SA thanks to the integration of different types 
of smart devices, including environmental, soil and plant sensors. On 
the other side, ML algorithms include various methods to automatically 
identify patterns within large amounts of data, in order to reach differ-
ent goals, including forecasting the future values of monitored data or 
performing decision-making tasks under uncertainty systems (Murphy, 
2012). ML algorithms can then be used, alongside IoT technologies, 
in different application scenarios, including SA, thus allowing farmers 
to address challenges such as farm productivity, environmental impact 
and sustainability.

With particular focus on SA, it is well-known that its main objective 
is to improve and increase both quality and quantity of crop yields, 
as described by Kassim (2020). In fact, as highlighted by Ozdogan 
et al. (2017), SA facilitates to monitor and analyze a wide range of 
parameters, related to environmental factors, crop production status, 
cultivation health status, and soil conditions. This approach brings var-
ious advantages in agriculture, including increased crop yields, reduced 
costs, improved product quality, and optimized processes, thus helping 
farmers to face challenges of climate changes. Finally, the deployment 
of the IoT technologies in SA can help farmers to objectively and 
precisely identify the ripeness time of hop cones and, more generally, 
of other types of crops.

In SA scenarios, predicting fruits ripening is crucial to reach quality 
and sustainability goals, including waste reduction through supply 
chain and optimization, as highlighted by Li et al. (2018). In fact, in-
field assessment of fruit ripeness, combined with accurate prediction 
of the optimal harvesting time using non-destructive technologies, can 
revolutionize traditional farming practices by optimizing harvesting 
operations and ensuring consumers to receive highest-quality prod-
ucts. In recent years, several studies have focused on the prediction 
of the maturation stages of various fruits, especially relying on ML 
and Deep Learning (DL) models. In the literature, these approaches, 
combined with image processing techniques, exploit the detection of 
the fruit color and shape to predict the maturation stages. Then, by 
integrating ML-based models, farmers can benefit from reliable and 
data-driven models also in the harvesting context. As an example, a 
specific Neural Network (NN) — namely, VGG-19 Convolutional Neural 
Network (CNN) — is proposed in Ramos et al. (2021) to allow a non-
invasive grape classification based on ripening stages, in detail relying 
on images acquired from traditional optical cameras as input infor-
mation. Moreover, Pereira et al. (2018) present a study about papaya 
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maturation, exploiting fruit images as input for a Random Forest (RF) 
model and enabling (as a result) accurate classification of the three 
different maturation stages. Heterogeneous types of input could be 
used to predict maturation stages. As an example, dos Santos Costa 
et al. (2019) propose a PCA-based approach for the classification of 
reflectance spectroscopy information of wine grapes, in detail consid-
ering three different regression models — namely, Principal Component 
Regression (PCR) and MLR — and various classifiers, then enabling the 
discrimination of different maturation stages in wine grapes. Neverthe-
less, in the literature very limited applications of smart technologies 
on hop cultivation have been reported, basically for the evaluation of 
the crop status and growth through satellite images and Unmanned 
Aerial Vehicles (UAVs) (Kumhálová et al., 2021; Agehara et al., 2024; 
Řeřicha et al., 2025). Furthermore, recent evidence has shown that hop 
classification can be achieved using DL approaches (Castro et al., 2022). 
Additionally, plant disease assessment can be performed through (i) 
CNN architectures as well as (ii) Binary Particle Swarm Optimization 
(BPSO) feature selection combined with SVM (Degadwala et al., 2023; 
Farhanah and Al Maki, 2022). Although smart technologies have been 
employed to monitor hop growth throughout the growing season, the 
identification of the ideal hop harvest time, which is fundamental for 
achieving high yields and quality, still remains an open issue. To the 
best of our knowledge, no models — whether ML- or PCA-based — have 
been proposed for predicting hop ripeness. 

In the context outlined above, the objective of this work is to 
develop a ML-based prediction model of hop cone ripening. Then, by 
integrating IoT technologies with the analysis of bitter acids and EOs 
in a real testbed, located in Campogalliano, Modena, Italy, a more 
comprehensive understanding of plants growth is achieved. This is 
crucial to ensure high-quality yields and to obtain the specific bitter 
acids and aromatic profiles that positively influence beer quality. The 
proposed approach aims to ease the harvesting operations, reducing 
hop cones’ wasting and maximizing the final production quality and 
quantity. Hence, to support these goals, a cloud-based IoT data man-
agement platform, denoted as Agriware (Oddi et al., 2024; Galaverni 
et al., 2025), is employed to collect and monitor data from different 
devices deployed in the experimental Italian crop testbed, thus enabling 
to reach different goals: (i) gather different crop-related parameters; (ii) 
evaluate (in real-time) agronomic indicators, such as the Normal Heat 
Hours (NHH); (iii) apply ML models to implement algorithms able to 
analyze and generate data, as well as to forecast the optimal harvesting 
period.

More in detail, the main objectives of the proposed work can be 
summarized as follow.

1. Weekly morphological and chemical characterization of hop 
cones.

2. Integration and monitoring of crop-related data through IoT 
technologies and the Agriware platform.

3. Definition of algorithms for the optimal harvesting time predic-
tion for a hop cultivation.

4. Harvesting support by reducing hop cones wasting and maximiz-
ing the final production quality and quantity.

The rest of the paper is organized as follows. Section 2 presents a 
description of materials and methods applied to the developed testbed, 
including a detailed description of the experimental crop setup, the hop 
sampling, the data analysis and the implemented algorithms. Section 3 
discusses the obtained experimental results, providing a comprehensive 
analysis. Finally, in Section 4 we draw conclusions and outline potential 
future research directions.
2. Materials and methods

The proposed work is organized as a chain of consecutive exper-
imentation steps (as shown in Fig.  1 for the sake of clarity), aiming 
at identifying the optimal hop cones harvesting period. Specifically, 
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Fig. 1. Experimental steps representing the proposed hop harvesting period forecasting mechanism.
Table 1
Chemical and physical properties of the experimental field.
 Chemical property Value 
 Organic matter [%] 3.1  
 Total nitrogen [g kg−1] 2.0  
 Assimilable Phosphorus (P2O5) 40.9  
 Exchangeable Calcium (Ca) [mg kg−1] 5850  
 Exchangeable Potassium (K) [mg kg−1] 382  
 Physical property Value 
 Coarse sand [%] 1.1  
 Fine sand [%] 13.0  
 Coarse silt [%] 14.4  
 Fine silt [%] 35.0  
 Clay [%] 36.5  

from the experimental crop (described in Section 2.1), hop cones were 
collected with different sampling between August and September in a 
few consecutive years (2021–2024), as described in Section 2.2. Then, 
as detailed in Section 2.3, the cones were analyzed to characterize the 
behavior of bitter acids content and EO yields. At the same time, as 
described in Section 2.4, data coming from the IoT sensors deployed 
in the crop were integrated into a platform, with a 10 min sampling 
interval, and then proper agronomic indicators have been calculated 
(as detailed in Section 2.5). Finally, as described in Section 2.7, two 
different ML-based algorithms, based on MLR and PCR, and a soft 
voting classifier were implemented to predict the optimal hop harvest 
time, using as input the most correlated data.

2.1. Experimental crop setup

The experimental activities have been carried out in the time period 
2021–2024 at the ‘‘Azienda Agricola Ludovico Lucchi’’ (with overall 
dimension of 4.89 ha) located in Campogalliano, Modena (Emilia-
Romagna Region, Italy) (44◦ 42′ 19.9′′ N, 10◦ 50′ 26.1′′ E, 33.39 m a.s.l.) 
on hop plants cv. (Cascade). More in detail, the trial has been performed 
on a loamy clay soil whose chemical and physical properties are 
summarized in Table  1.
3 
Table 2
IoT devices used at ‘‘Azienda Agricola Ludovico Lucchi’’ before 2023.
 IoT device Number of devices Measured parameters Dimension 
 

Weather station 1

Air temperature ◦C  
 Air moisture %RH  
 Air pressure kPa  
 Dew point ◦C  
 Rain mm  
 Evapotranspiration mm  
 Solar Radiation Wm−2  
 Wind speed m/s  
 Wind angle ◦  
 

Sensory unit 2

Soil moisture surface %RH  
 Soil moisture depth %RH  
 Soil temperature surface ◦C  
 Soil temperature depth ◦C  
 Foliar wetness mV  

Then, the hop crop at the ‘‘Azienda Agricola Ludovico Lucchi’’ 
has been monitored during different time periods through several IoT 
devices. Specifically, before 2023, the testbed was managed using a 
Netsens AgriSense IoT weather station (Netsens, 2025) and two sensory 
units. In detail, the weather station provides measurements of different 
environmental parameters, including air temperature, air humidity 
and solar radiation, as described in Table  2, while the sensory units 
consist of Frequency Domain Reflectometry (FDR) probes, placed in 
representative areas of the hop crop to measure soil-related parameters, 
including soil temperature, soil moisture and foliar wetness (as detailed 
in Table  2).

Then, starting from 2023, a new set of IoT devices, managed by the 
commercial platform (XFarm, 2025), was introduced. In detail, XFarm
is a platform (available also as a mobile App) that uses crop-related 
data to assist farmers to monitor the impact of their activities, improv-
ing practices and increasing positive contribution to the environment, 
through regenerative agriculture and sustainability. Consequently, the 
data in the time period 2023–2024 have been gathered and man-
aged through this platform, exploiting an IoT network composed by a 
weather station and 14 IoT sensors, including tensiometers, volumetric 
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Fig. 2. Experimental Cascade hop crop setup with the 14 IoT devices position at ‘‘Azienda Agricola Ludovico Lucchi’’.
Table 3
IoT devices managed (starting from the year 2023) by the XFarm platform at ‘‘Azienda 
Agricola Ludovico Lucchi.’’.
 IoT device Number

of devices
Measured parameters Dimension 

 
X Sense PRO weather station 1

Air moisture %RH  
 Air temperature ◦C  
 Wind speed m/s  
 Wind angle ◦  
 
XNode Hydro tensiometer sensor 2

Soil temperature surface ◦C  
 Soil temperature depth ◦C  
 Water potential kPa  
 XNode Soil Pro volumetric sensor 7 Soil moisture surface %RH  
 Soil moisture depth %RH  
 XLeaf foliar wetness sensor 1 Leaf wetness mV  
 Hours leaf wetness h  
 XTrap automatic insects trap 4 Image of trapped insects –  

sensors, foliar sensors and insect traps, as detailed in Table  3 and in 
Fig.  2. Within this setup, the weather station acts as a network gateway, 
aggregating data from other IoT devices and forwarding these data back 
to the XFarm cloud platform via the Long Range Wide Area Network 
(LoRaWAN) protocol (LoRa Alliance, 2025). In particular, LoRaWAN 
supports effective long-range communications and provides the abil-
ity to efficiently operate even in the presence of physical obstacles 
(e.g., underground), as shown in Aldhaheri et al. (2024). For this 
reason, LoRaWAN-enabled devices prove to be particularly beneficial 
for SA applications, allowing long-term monitoring and managing soil, 
crop, and air conditions.

2.2. Hop sampling

Hop cone samples were collected in the time period 2021–2024 at 
the ‘‘Azienda Agricola Ludovico Lucchi’’, Modena, Italy. More in detail, 
for each sampling, approximately 250 g of fresh hop cones have been 
collected for morphological and chemical analyses, then being sampled 
at different degrees of ripeness. For the sake of clarity, the number of 
samples and their dates are detailed in Table  4. Specifically, sampling 
in 2021 followed the BBCH scale for hops, beginning at growth stage 7
(BBCH code 71: ‘‘initial cone development’’) and ending st growth stage 
4 
Table 4
Time schedule of hop samplings in the time period 2021–2024.
 Year # samplings August September October 
 2021 6 18 – 23 – 26 3 – 8 – 15  
 2022 9 8 – 17 – 26 2 – 8 – 15 – 21 – 27 10  
 2023 3 24 8 – 15  
 2024 1 15  

9 (BBCH code 92: ‘‘senescence, cone overripeness’’) (Rossbauer et al., 
1995). The 2022 sampling campaign replicated this protocol, targeting 
the same developmental stages. Instead, in 2023 three samplings were 
performed in approximately BBCH codes 81, 89, and 92, corresponding 
to unripe, ripe and overripe cones (Fig.  SM1), respectively. Finally, 
in 2024 hop cones were collected at optimal ripeness (BBCH code 
89) (Rossbauer et al., 1995).

2.3. Hop cones analysis

All the samples collected in the four years of the experiment were 
characterized both morphologically — in terms of cone size — and 
chemically—in terms of bitter acids and EOs yield. After morphological 
analyses, the hop cones were dried until they reached a humidity of 
12% and then stored at −20 ◦C for further analyses. In the following, 
each hop cone characterization will be detailed.

2.3.1. Hop cones morphological measurements
The hop cones morphological measurements (obtained from approx-

imately 20 hop cones), at each sampling, were randomly chosen and 
manually measured directly in the field (on plants) in terms of width 
and length using a caliper.

2.3.2. Bitter acids extraction and quantification through HPLC-UV
The extraction of the bitter acids was conducted as described 

by Galaverni et al. (2024). The quantification of 𝛼- and 𝛽-acids was 
performed using a High Performance Liquid Chromatography (HPLC) 
system equipped with a pump, on-line vacuum degasser, auto-sampler, 
Peltier column oven, UV–Vis detector (PerkinElmer Series 200, Shelton, 
USA) and autosampler (PerkinElmer series 220, Shelton, USA). Then, 
chromatographic data were analyzed with a PerkinElmer Total Chrome 
workstation (version 6.3.1.). HPLC was equipped with Luna C18:2 col-
umn (5 μm, 100 A, 250 mm×4.6 mm) (Phenomenex®, Castel Maggiore, 
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Bologna, Italy). For the mobile phase, solvent A (water (H2O) + 0.1% 
orthophosphoric acid (H3PO4) and solvent B (methanol (CH3OH) + 
0.1% H3PO4) were employed. The chromatographic conditions used 
were the following: flow rate: 1.5 mL min−1 in isocratic, column 
temperature: 30 ◦C; injection volume: 10 μL; eluents: A (5%) and B 
(95%) for 15 min. Chromatograms were acquired at 314 nm. Three 
injections from three independent extractions were conducted for each 
sample. For the bitter acids quantification, a calibration curve was 
obtained from dilution of ICE-4 standard, in line with the official 
method (Analytica-EBC, method 7.7).

2.3.3. Essential oils extraction
EOs were extracted by steam distillation for 4 h with a Clevenger 

type apparatus to determine the oil content. Then, the EO yield was 
calculated as the ratio between the weight of the extracted oil and the 
dry weight of the used cones (w/w, dimension: [%]).

2.4. Data integration platform

In addition to the brief detail on the XFarm platform provided in 
Section 2.1, it should be highlighted that the platform also provides a 
Web dashboard for monitoring and controlling various crops, including 
the Cascade hop crop at the ‘‘Azienda Agricola Ludovico Lucchi’’, 
as well as providing different types of information, obtained directly 
from the sensors deployed in the crop itself. This information includes 
real-time IoT sensors data, insects’ images, and crop conditions.

Moreover, the platform gives access to real-time data through spe-
cific HTTP APIs — available to all registered users — and enables the 
retrieval of historical data collected over a specified period. These APIs 
can be used to establish a connection with the platform and to retrieve 
information (in JSON format) related to the farm (in general) as well 
as to some specifically installed sensors. For completeness, the APIs 
operate through the following four distinct steps, each handled by a 
specific HTTP request and a dedicated endpoint.

1. POST Login: the Login API endpoint allows registered users or 
external softwares to sign in into the platform and obtain the
bearer token, needed to authenticate the subsequent API calls. 
This call must be a POST HTTP request and requires valid user-
name–password credentials as data payload. Then, the endpoint 
can return, as HTTP response, an error (401 UNAUTHORIZED,
403 FORBIDDEN, 404 NOT FOUND) or a success (200 OK).

2. GET Own Farm: the Farms API endpoint, that must be a GET
HTTP request, allows to access the information on the farm 
associated with the authenticated user and to retrieve the cor-
responding farms_id.

3. GET Device List: using the farms_id obtained in the previous 
step, the Equipment API endpoint can be invoked to obtain a list 
of all the devices (denoted as ‘‘equipments’’) associated with the 
selected farm, where each device will be identified by a unique
device_id. The remote call must be a GET HTTP request and 
the success response includes the list of available devices.

4. POST Sensor Data: once the list of the available devices is 
obtained, it is possible to call the Telemetry API endpoint, by 
specifying the farm_id and the device_id. This API end-
point allows users to specify a valid range of time and the HTTP 
response contains the list of all parameters monitored by the 
selected sensor.

Then, the heterogeneous data collected from IoT devices and from 
the XFarm platform have been integrated into a general data acquisition 
platform, denoted as Agriware. More specifically, Agriware targets: (i) 
the integration of information from heterogeneous SA data sources, in 
order to achieve the management and monitoring of different crops; (ii) 
the definition of custom software units for data processing, in order 
to handle data and generate new information streams; and (iii) the 
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monitoring of the managed testbeds and parameters (as detailed in 
Tables  2 and 3, respectively) collected by IoT sensors. Finally, all this 
information is presented to external entities, commonly referred to as
Consumers—for example, the Agriware Web application presents the 
results of interest to the farmer through the support of reports and 
charts.

The ingestion of data in the Agriware platform relies on a set 
of software modules, denoted as Connectors. The main purpose of a 
Connector is to allow the integration of a data stream from a specific 
IoT data source into the overall system. The specific structure and the 
implementation of a Connector depend on the technologies used to 
generate and transmit data.

Within the scope of this work, a specific Connector has been imple-
mented to integrate the data from different data sources managed by 
the XFarm platform and, consequently, from the IoT devices deployed 
in the testbed in Campogalliano, Modena. More in detail, the XFarm 
Connector, which has been implemented in Python and is based on the 
HTTP communication protocol having to interact through the XFarm
APIs, targets to (i) periodically invoke the provided APIs, (ii) handle the 
authentication process, as access is restricted to registered users only, 
and (iii) integrate IoT sensor-related data into the Agriware platform. 
To this end, the following two principal operations are periodically 
performed, through interactions with XFarm APIs and corresponding 
HTTP requests, by the XFarm Connector.

1. Login: this operation is required to manage the authentication 
process and, subsequently, to login into the XFarm Login API to 
retrieve the bearer token. As mentioned before, the bearer token
is required for the GET Own Farm and the GET Device List API 
invocations.

2. Obtain sensor data: once the list of devices has been obtained, 
this function is used to add or update the entities related to data 
sources. Consequently, the GET Sensor Data API is invoked to 
retrieve and store the obtained sensor data.

The XFarm Connector is designed to be scalable and effective, ensuring 
simplified management of IoT devices. This implies that, whenever a 
new sensor is installed, the Connector can integrate its data into the
Agriware platform, without requiring internal modifications or updates.

Finally, as mentioned before, all the sensors communicate through 
the LoRaWAN protocol, transmitting different types of data (e.g., leaf 
wetness, air moisture, their DevEUI, etc.) in the message body. In order 
to manage these different parameters, a specific descriptor is assigned 
to each device type. The main objective of a descriptor is to establish 
a mapping between the sensor-measured parameters and the internal
ontology of the Agriware middleware. All the values reported by IoT 
sensors are mapped into predefined ontology types, each associated 
with a data-related label, ensuring efficient data management.

2.5. Data analysis

As mentioned before, this work focuses on the analysis of the 
different testbed data conducted to understand the behavior of the
Cascade hop crop. In detail, hop cone measurements (namely, length 
and width), bitter acids content (𝛼-acids and 𝛽-acids), and EO yield 
have been analyzed using statistical methods. Then, proper agronomic 
indicators have been calculated, including the NHH curve, the Growing 
Degree Days (GDD), and the Heat Units (HUs). Finally, correlations be-
tween agronomic parameters, agronomic indicators, and data collected 
from IoT devices have been evaluated and analyzed: this is expedient 
to highlight how external environmental factors can affect crop growth, 
development and reproduction.
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Fig. 3. NHH curve calculated for the Cascade hop crop. In particular, LC is set to 5 ◦C, LO to 22 ◦C, UO to 26 ◦C and UC to 35 ◦C.
2.5.1. Statistical analysis
Hop cone measurements, bitter acids content, and the EO yield have 

been evaluated through the XLSTAT software (Lumivero, 2025). All 
data have been analyzed in terms of mean ± standard error, while 
the normal distribution of the data and the variance homogeneity 
have been checked in accordance to Shaphiro and Wilk (1965) and 
Levene (Olkin, 1960).

2.5.2. NHH and GDD index
The NHH curve, calculated with the method described by Ferrante 

and Mariani (2018), is a crop-specific agronomic graphical indicator 
mapping average temperatures into a normalized value within the 0÷1
range, and useful to understand the impact of temperatures above 
or below the optimum range for plant growth. With regard to the 
experimental evaluation, the calculated NHH curve for the Cascade hop 
cultivation is shown in Fig.  3.

In detail, the NHH curve returns that adequate growth and de-
velopment only happen in a specific thermal range, delimited by the 
following two temperatures.

1. Lower Cardinal (LC) temperature: this temperature represents 
the vegetation zero point, also referred to as base temperature
(denoted as 𝑇base the following), which is specific to the culti-
vation being considered and represents the minimum biological 
temperature at which plants continue their vegetative activities. 
In particular, for the Cascade hop cultivation, 𝑇base is set to 5 ◦C.

2. Upper Cardinal (UC) temperature: this temperature refers to 
the cutoff temperature (denoted as 𝑇cutoff) and represents the 
temperature above which plants cannot grow. For the Cascade
hop cultivation, 𝑇cutoff is set to 35 ◦C.

Moreover, inside the described range, it is possible to identify a 
sub-optimal temperature range within which plants’ growth and de-
velopment occur without thermal limitation. Therefore, the response 
of the NHH curve in this range is set equal to 1, indicating that the 
plant can grow without thermal stress, making the conditions ideal 
for its development. This range is delimited by the following two 
temperatures.

1. Lower Optimal (LO) temperature: this temperature (denoted as 
𝑇LO) represents the minimum temperature for optimal growth of 
plants. Below this temperature, growth begins to slow down. For 
the Cascade hop cultivation, the lower optimal temperature is set 
to 22 ◦C.

2. Upper Optimal (UO) temperature: this temperature (denoted as 
𝑇UO) represents the optimal maximum temperature for plants’ 
growth, while above this temperature the growth is reduced 
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because of thermal stress. With regard to the Cascade hop culti-
vation, the UO temperature is set to 26 ◦C.

The values of the plant-related NHH curve have been calculated 
using the algorithm defined in Eq. (1), where 𝑇avg represents the average 
temperature: 

NHH =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 if 𝑇avg ≤ 𝑇base or 𝑇avg ≥ 𝑇cutoff
1 if 𝑇avg ≥ 𝑇LO and 𝑇avg ≤ 𝑇UO
𝑚 ⋅ 𝑇avg + 𝑞 if 𝑇avg ≥ 𝑇base and 𝑇avg ≤ 𝑇LO where:

𝑚 = 1
(𝑇LO − 𝑇base)

and

𝑞 = 1 −
𝑇LO

(𝑇LO − 𝑇base)
𝑚 ⋅ 𝑇avg + 𝑞 if 𝑇avg ≥ 𝑇UO and 𝑇avg < 𝑇base where:

𝑚 = − 1
(𝑇cutoff − 𝑇UO)

and

𝑞 = 1 +
𝑇UO

(𝑇cutoff − 𝑇UO)
.

(1)

The GDD, defined by Derscheid and Lytle (1981), is an agronomic 
indicator primarily used to describe the timing of biological processes. 
In detail, it corresponds to a measure of heat accumulation and is used 
in agriculture to predict plant development stages (Saadi et al., 2015). 
In particular, the GDD of day 𝑗, where 𝑗 represents a generic day, so 
that (𝑗 −1) represent its predecessor, is obtained by adding the GDD of 
the prior day (𝑗 − 1) according to the following equation: 

GDD(𝑗) = GDD(𝑗−1) +

⎧

⎪

⎨

⎪

⎩

(𝑇avg − 𝑇base) if 𝑇avg > 𝑇base and 𝑇avg < 𝑇cutoff
(𝑇cutoff − 𝑇base) if 𝑇avg ≥ 𝑇cutoff
0 if 𝑇avg ≤ 𝑇base .

(2)

where the daily average temperature (𝑇avg) and the vegetation zero point
(𝑇base) are used, given the fact that the GDD is a daily agronomic 
indicator derived directly from the air temperature. In fact, the air 
temperature has a direct effect on the crop geographical distribution 
and growth.

HUs, defined in Machado et al. (2004), are valuable tools for 
predicting harvesting dates and determining the timing of successive 
plantings. More in detail, HUs are cumulative over time and are calcu-
lated daily using six different methods, introduced by Machado et al. 
(2004). These methods take into account, in addition to 𝑇cutoff and 
𝑇base, two supplementary variables, such as (i) the daily maximum 
air temperature, denoted as 𝑇max, and (ii) the daily minimum air 
temperature, denoted as 𝑇 . The adopted methods, detailed in the 
min
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following, calculate the accumulation of six different types of HU, each 
of them directly derived from the air temperature.

1. Standard Day-Degrees: (𝑇max + 𝑇min)∕2 − 𝑇base.
2. Daily mean temperature: (𝑇max + 𝑇min)∕2.
3. Daily maximum temperature above 𝑇base: 𝑇max − 𝑇base.
4. Daily maximum temperature: 𝑇max.
5. Daily maximum temperature above 𝑇base with reduction of 𝑇cutoff
for plant development when 𝑇max is higher then 𝑇cutoff:

if 𝑇x ≤ 𝑇cutoff ∶ 𝑇x − 𝑇base (3)

else if 𝑇max > 𝑇cutoff ∶ 𝑇cutoff − (𝑇max − 𝑇cutoff) − 𝑇base . (4)

6. Ontario Units: (𝑇a + 𝑇b)∕2 where:

𝑇a = 3.33 ⋅ (𝑇max − 10) − 0.084 ⋅ (𝑇x − 10)2

𝑇b = 1.8 ⋅ (𝑇min − 4.4) .

2.6. Optimal harvesting time prediction

Building upon the previous analyses, the goal of the proposed work 
is the prediction of the maturation and, consequently, of the optimal 
harvesting period for the analyzed Cascade hop crop. To this end, 
two different ML models are considered: (i) the combined use of a 
MLR model with a soft voting classifier, and (ii) the use of a PCA 
method (Pearson, 1901) in the implementation of a PCR model. Both 
algorithms are implemented to (i) forecast parameters (or principal 
components) of the sensors and (ii) classify the predicted values into 
three predefined classes—namely, immature, mature, overripe. For the 
sake of clarity, it should be highlighted that MLR and PCR were 
preferred for this specific task, with respect to other algorithms—
e.g., Artificial Neural Networks (ANN) or 𝑘-Nearest Neighbors (𝑘-NN) 
thanks to their suitability to small datasets, such as the one available 
in the current work.

2.6.1. Multiple linear regression (MLR)
The first ML method employed is MLR (Mashaly and Alazba, 2016), 

a linear regression model using regression coefficients to determine the 
relationship between inputs and outputs, assuming the resistance of a 
linear relationship between them. This method, described by Eq. (5), 
optimizes regression coefficients by minimizing prediction error and is 
capable of simultaneously predicting multiple target variables (Ehteram 
and Banadkooki, 2023): 
𝑌 = 𝛽0 + 𝛽1 ⋅𝑋1 +⋯ + 𝛽𝑛 ⋅𝑋𝑛 (5)

where 𝑋1, . . . , 𝑋𝑛 are the input variables and 𝛽0, . . . , 𝛽𝑛 are regression 
coefficients.

MLR is used to forecast input features for the following day. Then, 
using the iterated strategy (Chevillon, 2007), the predictions are ex-
tended over multiple days, conducting a prediction model by minimiz-
ing the squares’ residuals. Specifically, the iterated strategy generates a 
1-step-ahead prediction, using the predicted values iteratively as input 
for the same model to subsequently forecast the following points. This 
process recursively continues until the desired prediction horizon is 
reached, as described by Bao et al. (2014). The features’ prediction 
for the subsequent day is carried out considering a temporal loopback
period comprising the previous 4 days. The window size, i.e., the loop-
back period, was chosen by identify the highest accuracy. Specifically, 
the accuracy of the model increases as the loopback period grows 
from 1 to 4 days, while it decreases with longer loopback periods. 
In order to achieve this, a feature derivation technique was applied: it 
calculates features for the 4-day loopback period, enabling the creation 
of an ad-hoc dataset. As a result, for each feature to be predicted, the 
corresponding features from the previous days were also included as 
additional inputs. New columns are created by shifting existing features 
over a 4-day period, allowing the model to use past feature values as 
input to predict future values.
7 
2.6.2. Principal component regression (PCR)
The second regression model adopted in this work is PCR, cor-

responding to the combination of MLR with PCA. In this regressor, 
clustering and selection of input data for MLR have been performed via 
PCA, a statistical dimensionality reduction method introduced in 1901 
by Karl Pearson (Pearson, 1901). In detail, the PCA allows to transform 
the original dataset into a lower-dimensional dataset composed of 
uncorrelated Principal Components (PCs), as detailed by Radzol et al. 
(2014). Determining the optimal number of PCs is a crucial task, as the 
PCs must effectively allow to characterize all the available information. 
In fact, several PCA stopping rules have been proposed to determine 
the number of PCs to retain, including: Kaiser’s stopping rule; Cattell’s 
scree test; and the Cumulative Percent of Variance (CPV) method.

1. Kaiser’s stopping rule, also known as Eigenvalue-One-Criterion 
(EOC), was presented by Kaiser (1960) and states that only 
PCs with eigenvalues greater than one should be considered 
for further analysis. Essentially, this means that a component is 
considered significant if it accounts for at least as much variance 
as the equivalent of an original variable.

2. Cattell’s scree test, proposed by Cattell (1966), determines the 
number of PCs to retain by identifying the point in the variance 
graph where a sharp change, also referred to as elbow, occurs. 
The PCs corresponding to the elbow are considered significant.

3. The CPV method is a criterion that retains components whose 
CPV meets a designated threshold, which can vary depending 
on the context and application.

Therefore, PCR is used to predict the PCs’ values with a one-step-
ahead approach. Similarly to MLR, PCR is employed in our work to 
forecast input features for the following day; subsequently, the predic-
tions are extended to cover the desired prediction temporal horizon, 
using an iterated strategy.

2.6.3. Soft voting classifier
The soft voting classifier is a parallel ensemble method operating on 

the principle that the predictions of multiple basic classifiers can be 
combined to achieve more reliable and accurate classification results. 
In particular, this type of voting classifier employs the soft voting
technique, defined as (Raschka, 2023): 

 = arg max
𝑖=1,…,𝐶

𝑀
∑

𝑘=1
𝑤𝑘𝑝𝑖𝑘 (6)

where:  corresponds to the predicted class label; 𝑀 is the number 
of classifiers; 𝐶 is the number of classes; 𝑤𝑘 is the weight that can 
be assigned to the 𝑘th classifier; and 𝑝𝑖𝑘 corresponds to the proba-
bility of the 𝑖th class predicted by the 𝑘th classifier. Therefore, the 
soft voting classifier averages the class probabilities predicted by the 
considered classifiers and selects the class with the highest average 
probability (Manconi et al., 2022).

2.7. Optimal harvesting time prediction algorithms

Two optimal harvesting time prediction algorithms, based on the 
ML methods described in Section 2.6, were implemented. Each algo-
rithm combines two main types of ML models: (i) a regressor, capable 
of predicting the input features; and (ii) a supervised multi-class classifier, 
able to decide the correct class (immature, mature, overripe) of the 
predicted features. For the regression task, data were divided in order to 
retrieve different datasets: data collected from 2019 to 2022 were used 
as the training set, and data from 2023 served as the test set. Finally, 
the trained algorithms were used to predict the optimal harvest period 
for the 2024 season. Instead, for the classification task, only the data 
collected during the hop-growing season (July–October period) were 
used, with data from 2020 to 2023 serving as the training set, while 
data from 2024 were used as the test set.
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Fig. 4. Flowchart of the first proposed algorithm for the forecasting and the classification of the Cascade hop optimal harvesting period.
2.7.1. First prediction algorithm
The first prediction algorithm combines a MLR with a soft voting 

classifier. The workflow performed by this algorithm is shown in Fig. 
4.

Initially, a MLR is implemented using, as input, only sensor data 
highly correlated to agronomic parameters and classes. These parame-
ters consist of 6 different features, including air temperatures (namely: 
daily average, maximum, minimum) and soil surface temperatures 
(namely: daily average, maximum, minimum). Subsequently, the soft 
voting classifier uses, as input, the output of the iterated strategy 
applied to the predictions made by MLR. This input includes (i) data 
highly correlated to agronomic parameters and classes (such as air 
temperature, soil surface temperature, GDD values) and (ii) the week 
number (namely, week no.1, …, week no.52) of the year, as it resulted 
in the data analysis phase. To achieve this, it is necessary to calculate 
the GDD values and the corresponding week number for each predicted 
day. Finally, the output provides a prediction of the optimal harvesting 
period, corresponding to the days whose data were labeled as mature. 
More in detail, the MLR model was defined and implemented using the
LinearRegression model provided by the scikit-learn Python 
package. Moreover, this model was trained using the features derived 
from the training set (2019–2022).

2.7.2. Second prediction algorithm
The second algorithm combines PCR with a soft voting classifier. 

The workflow performed by this algorithm is shown in Fig.  5.
In this approach, the initial input consists of all 42 features, in-

cluding collected sensors data and calculated agronomic indicators. 
Consequently, a dimensionality reduction through PCA is required be-
fore running PCR: only the 4 most relevant PCs feed the subsequent PCR 
followed by a soft voting classifier. In detail, the most relevant PCs are 
detected by implementing the PCA decomposition offered by the
scikit-learn Python package. The PCR model is implemented us-
ing the LinearRegression model provided by the scikit-learn
Python package. The PCR operates using the iterated strategy to cover 
the entire prediction horizon. As with the first algorithm, the iterative 
forecasting strategy stops when the prediction horizon is reached. Then, 
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the predicted PCs, together with the calculated GDD values and the 
week of the year, are used as input for the soft voting classifier. The 
final output provides a prediction of the optimal harvesting period, 
corresponding to the days whose data are labeled as mature by the soft 
voting classifier.

3. Results

3.1. Data correlations

The data collected from the IoT devices have been analyzed in 
order to highlight correlations among the monitored parameters. Table 
5 depicts the values of the Pearson’s correlation coefficient (denoted 
as 𝜌) between pairs of the parameters measured by IoT devices, while 
Fig.  6 shows the trend of correlations between pairs of parameters with 
a high 𝜌 (𝜌 = 0.89) — namely, the soil surface temperature and the 
air temperature — measured throughout the 2023 hop season. Then, 
even if 2023 season is illustrative to highlight this correlation, the same 
data have been analyzed using the daily average data: the data have 
been interpolated, evaluating the corresponding angular coefficients 
and dispersions, as shown in Fig.  7. In Figs.  6 and 7, the colors indicate 
the elapsed time, with blue dots representing the earliest available data 
(from July 5, 2023) and red dots referring to the last available data 
(until October 31, 2023).

Subsequently, an additional data analysis has been performed to de-
termine the strongest correlations between sensor data and agronomic 
parameters, as well as between calculated agronomic indicators and 
agronomic parameters. In fact, only the most correlated sensor data 
and agronomic indicators are considered as input for the forecasting 
algorithms. Tables  6 and 7 present the values of 𝜌 for all pairs of 
data, respectively. The following agronomic parameters of hop cones, 
essential to understand the harvesting time, are considered in this 
analysis:

1. percentage of oil in the cone;
2. 𝛼-acids content (Cohumulone and Adhumulone);
3. 𝛽-acids content (Colupulone and Adlupulone);
4. cone humidity;
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Fig. 5. Flowchart of the second proposed algorithm for the forecasting and the classification of the Cascade hop optimal harvesting period.

Fig. 6. Correlations representation during time between soil surface temperature (◦C) and air temperature (◦C) 10–minutes values for 2023 data (𝜌 = 0.89).

Fig. 7. Interpolation, with angular coefficient and dispersion parameters, between soil surface temperature (◦C) and air temperature (◦C) daily values for 2023 data (𝜌 = 0.89).
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Table 5
Values of 𝜌 between pairs of collected IoT sensors parameters.
 Property Air tem-

perature
Air 
humidity

Air 
pressure

Dew point Rain Solar 
radiation

Wind ETP Soil 
humidity 
1

Soil 
humidity 
2

Soil tem-
perature 1

Soil tem-
perature 2

 

 Air 
temperature

1 −0.191 −0.174 0.799 0.036 0.345 −0.637 0.468 0.122 0.032 0.891 0.877  
 Air 
humidity

−0.191 1 −0.158 0.431 0.596 −0.150 0.364 −0.209 −0.325 −0.392 −0.088 −0.050  
 Air pressure −0.174 −0.158 1 −0.299 0.048 −0.077 0.074 −0.078 −0.013 0.081 −0.094 −0.142  
 Dew point 0.799 0.431 −0.299 1 0.384 0.193 −0.351 0.271 −0.090 −0.222 0.760 0.780  
 Rain 0.036 0.596 0.048 0.384 1 −0.200 0.428 −0.201 −0.213 −0.209 0.286 0.247  
 Solar 
radiation

0.345 −0.150 −0.077 0.193 −0.200 1 −0.230 0.988 −0.221 −0.238 0.359 0.418  
 Wind −0.637 0.364 0.074 −0.351 0.428 −0.230 1 −0.298 −0.458 −0.456 −0.333 −0.269  
 ETP 0.468 −0.209 −0.078 0.271 −0.201 0.988 −0.298 1 −0.195 −0.221 0.463 0.515  
 Soil 
humidity 1

0.122 −0.325 −0.013 −0.090 −0.213 −0.221 −0.458 −0.195 1 0.943 0.005 −0.124  
 Soil 
humidity 2

0.032 −0.392 0.081 −0.222 −0.209 −0.238 −0.456 −0.221 0.943 1 −0.046 −0.214  
 Soil 
temperature 
1

0.891 −0.088 −0.094 0.760 0.286 0.359 −0.333 0.463 0.005 −0.046 1 0.974  

 Soil 
temperature 
2

0.877 −0.050 −0.142 0.780 0.247 0.418 −0.269 0.515 −0.124 −0.214 0.974 1  
Table 6
Values of 𝜌 for pairs of sensor (rows) and agronomic (columns) parameters.
 Property Oil% Cohumulone Adhumulone 𝛼-acids Colupulone Adlupulone 𝛽-acids Cohumulone% Humidity% Length Width  
 Air temperature −0.6808 −0.0236 0.0873 0.0574 −0.2580 −0.0867 −0.1575 −0.5513 0.5365 −0.3714 −0.2663 
 Air humidity 0.0405 −0.4917 −0.5296 −0.5198 −0.0050 0.0583 0.0753 −0.0064 −0.2662 0.0715 0.0171  
 Air pressure 0.1800 0.0726 0.0651 0.0683 0.0040 −0.0582 −0.0977 0.0509 −0.2410 −0.0163 −0.1191 
 Dew point −0.5480 −0.3295 −0.2547 −0.2753 −0.2387 −0.0452 −0.0938 −0.4962 0.3404 −0.2968 −0.2479 
 Rain −0.4789 −0.3254 −0.3141 −0.3133 −0.1866 −0.0465 −0.1007 −0.2059 −0.0917 0.0089 −0.1505 
 Solar radiation −0.3228 −0.0868 −0.0538 −0.0636 −0.3062 −0.2993 −0.2953 −0.1920 0.0615 −0.2014 −0.0140 
 Wind 0.5583 −0.1529 −0.2342 −0.2099 0.0891 0.0345 0.0721 0.3649 −0.6287 0.3595 0.1337  
 ETP −0.4019 −0.0679 −0.0198 −0.0337 −0.3207 −0.2901 −0.2995 −0.2587 0.1312 −0.2304 −0.0376 
 Soil humidity 1 −0.2017 0.5418 0.6092 0.5929 0.4730 0.5003 0.4776 −0.0992 0.5174 −0.1490 −0.1415 
 Soil humidity 2 −0.2580 0.4866 0.5371 0.5252 0.3091 0.2863 0.2680 −0.0400 0.5528 −0.2855 −0.2408 
 Soil temperature 1 −0.8179 −0.0826 0.0099 −0.0138 −0.3718 −0.2135 −0.2682 −0.4820 0.4845 −0.4386 −0.4017 
 Soil temperature 2 −0.5588 −0.2033 −0.1159 −0.1390 −0.4220 −0.2527 −0.3040 −0.4822 0.4187 −0.4125 −0.3982 
Table 7
Values of 𝜌 between pairs of calculated agronomic indicators (rows) and agronomic parameters (columns).
 Property Oil% Cohumulone Adhumulone 𝛼-acids Colupulone Adlupulone 𝛽-acids Cohumulone% Humidity% Length Width  
 GDD 0.8507 −0.0401 −0.1319 −0.1069 0.3859 0.2927 0.3564 0.4635 −0.8576 0.6804 0.5803 
 Standard day degree 0.3747 −0.1543 −0.1915 −0.1796 −0.1507 −0.1560 −0.1234 0.1200 −0.5814 0.3166 0.2765 
 Daily mean temperature 0.3025 −0.1881 −0.2202 −0.2100 −0.1848 −0.1821 −0.1525 0.0853 −0.5481 0.2779 0.2474 
 Daily max above 𝑇𝑏𝑎𝑠𝑒 0.3195 −0.1892 −0.2228 −0.2122 −0.1760 −0.1747 −0.1443 0.0928 −0.5597 0.2892 0.2567 
 Daily max 0.2941 −0.1970 −0.2287 −0.2186 −0.1885 −0.1846 −0.1552 0.0807 −0.5458 0.2742 0.2450 
 Daily max reduction 0.3282 −0.1831 −0.2172 −0.2064 −0.1746 −0.1746 −0.1440 0.0964 −0.5630 0.2920 0.2584 
 Ontario units 0.3377 −0.1636 −0.1978 −0.1868 −0.1719 −0.1740 −0.1430 0.1020 −0.5611 0.2933 0.2585 
5. cone growth, measured in terms of length and width.

The correlation analysis reveals that the most strongly correlated 
parameters, among those monitored by IoT sensors, are the air tem-
perature (𝜌 = 0.68 with oil cone percentage) and the soil surface 
temperature (𝜌 = 0.82 with oil cone percentage), while the GDD is the 
most correlated indicator (𝜌 = 0.85 with both the oil percentage and 
cones humidity). Notably, air and soil surface temperature correlate 
well with the oil percentage, which is an indicator of hop aroma 
potential in beer and is known to be an increasing function of harvest 
date (Lafontaine et al., 2019). Additionally, a strong correlation is 
found between GDD and cone humidity, which, together with phy-
tochemical compounds, is considered by the brewing industry when 
assessing hop maturation (Kavalier et al., 2011).

3.2. Ripening classes characterization

Following the data correlation analysis, a new dataset has been cre-
ated to address the classification problem. Specifically, the information 
about the optimal harvesting period for the Cascade hop crop testbed, 
spanning from 2021 to 2023, has been exploited. Consequently, only 
the data collected during the hop growth period (July–October for 
each of the three years) were labeled. The labeling process enabled 
the separation of the data rows into three distinct classes, representing 
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Table 8
Data split into three classes, according to the generation date (indicated as 𝑑).
 Year Immature Mature Overripe  
 2021 𝑑 ≤ August 23 August 24 ≤ 𝑑 ≤ September 5 𝑑 ≥ September 6  
 2022 𝑑 ≤ August 29 August 30 ≤ 𝑑 ≤ September 18 𝑑 ≥ September 19 
 2023 𝑑 ≤ September 4 September 5 ≤ 𝑑 ≤ September 12 𝑑 ≥ September 13 

different stages of crop development, on the basis of the data generation 
timestamp and the date intervals shown in Table  8.

- [0] Immature: this class identifies the daily sensor information 
corresponding to the period when the hop crop was not yet ready 
for harvest. This period corresponds to the phenological stages 
related to the early development of the cones.

- [1] Mature: this class represents the daily sensor information 
generated and collected in the optimal harvesting time period, 
ensuring the production of the highest quality hop cones.

- [2] Overripe: this class captures the daily sensor data corre-
sponding to the time period when it was too late to harvest the 
cones, resulting in a crop with lower quality compared to the 
previous stage.

The labeled dataset has been analyzed to identify correlations with 
each class, and to determine the most significant features associated 
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Table 9
Values of 𝜌 between classes and atmospheric features.
 Air temperature Air humidity Air pressure Dew point Rain Solar radiation Wind ETP  
 −0.74139 0.32925 0.19493 −0.60605 −0.01827 −0.56524 0.34136 −0.57790 
Fig. 8. Air average temperature values (in 2023) predicted by the MLR algorithm trained on most correlated features.
Table 10
Values of 𝜌 between class division and soil features.
 Soil surface 
humidity

Soil depth 
humidity

Soil surface 
temperature

Soil depth 
temperature

 

 −0.08421 −0.22191 −0.70375 −0.62758  

with the mature class. In fact, Table  9, Tables  10 and 11 present the 
values of 𝜌 calculated between class labels and atmospheric related 
characteristics, soil-related characteristics and calculated agronomic 
indicators, respectively. These correlations highlight that the most sig-
nificant features, with regard to class division, are: (i) air temperature 
(𝜌 = −0.74); (ii) soil surface temperature (𝜌 = −0.70); and (iii) GDD 
(𝜌 = 0.72). In addition, the relationship between the class division and 
the temporal indicator, represented by the week of the year, has been 
studied. To this end, by analyzing the available data related to the hop 
crop phenological stages, it is evident that hop plants, in recent years, 
have never been ready for harvesting before week no.34. In particular, 
the week becomes highly significant in identifying the optimal harvest 
time (𝜌 = 0.82 with class division).

3.3. Algorithms outputs

The performance of the MLR regressor, evaluated on the test set 
(2023), is summarized in Table  12. The evaluation metrics are Mean 
Absolute Error (MAE), Mean Squared Error (MSE), and Coefficient of 
Determination (R2). The selected indicators are expedient to assess the 
model’s accuracy and reliability in forecasting the features on the basis 
of the input data. In Fig.  8, the predicted values of the air average 
temperature feature are shown, comparing them with the true air 
temperature values: an excellent accuracy can be observed.

Moreover, for the first presented algorithm, the adopted soft voting 
classifier combines 5 different supervised ML classifiers, i.e., the ones 
that achieved an accuracy greater than 0,9: RF (0.929), Decision Tree 
(DT, 0.905), 𝑘-NN (0.929), Extra Trees (0.952), and Gradient Boosting 
(0.952). The soft voting classifier achieves an F1-score of 0.929 and an 
accuracy of 0.929 on the test set (20% of all dataset). The confusion 
matrix corresponding to this classifier is shown in Fig.  9(a). 

For the second algorithm presented in this work, the PCs were 
investigated before implementing the PCR model to find out how many 
PCs need to be considered for the implementation of the PCR model. In 
11 
particular, from the PCA, the Kaiser’s stopping rule indicates that 25 PCs 
can be retained. However, Cattell’s scree test was applied to further 
refine the selection and identify the most significant PCs. As shown in 
Fig.  10, the scree plot test highlights that 4 PCs can be considered as 
essential. Additionally, the CPV applied to our data, as shown in Fig. 
11, reveals that these 4 PCs account for over 75% of the total variance 
in the dataset, while 95% of the variance is explained using 11 PCs. 
However, our experimental tests show that using 11 PCs degrades the 
accuracy—in general, increasing the number of PCs beyond 4 lowers 
the accuracy.

On the basis of these results, four PCs were considered for all the 
algorithms, as these components effectively summarize most of the 
information contained in all the features of the original dataset. The 
PCR model was trained on the training dataset associated with the years 
2019–2022 and, then, tested on the test dataset associated with the year 
2023. The performance metrics (in terms of MAE, MSE, and R2) are 
shown in Table  13.

Moreover, in Fig.  12 the predicted values of the first PC in 2023 
are shown and compared with the actual values. The soft voting clas-
sifier combines different supervised ML classifiers, specifically those 
achieving an accuracy higher than 0.9: RF (0.952), DT (0.905), Support 
Vector Classificator (0.905), Extra Trees (0.929), AdaBoost (0.929). The 
classifier achieves a final F1-score of 0.884 and an accuracy of 0.881 on 
the test set (20% of the dataset). The confusion matrix for this classifier 
is shown in Fig.  9(b).

3.4. Morphological analysis of Hop cones

Changes in the morphology of hop cones are shown in Table  14, 
which clearly shows that, during the period 2021–2022, there was 
a significant growth of cones, in terms of both length and width, 
between the first and third samplings. From that point onward, the 
size remained almost constant. Each hop variety is characterized by its 
specific morphological features, including cone size and shape (Roberts 
and Wilson, 2006). Since there is a direct relationship between cone 
development and the accumulation of secondary metabolites (Kavalier 
et al., 2011), cone length is an important feature to be considered 
when evaluating the degree of ripeness, as cone elongation ceases only 
at physiological maturity (Čeh et al., 2012). For instance, Kavalier 
et al. (2011) morphologically and chemically characterized hop cones 
of the Willamette and Zeus cultivars across five developmental stages, 
reporting a significant increase in cone volume and mass alongside a 
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Table 11
Values of 𝜌 between classes and agronomic indicators.
 GDD Standard degree day Daily mean Daily max above 𝑇𝑏𝑎𝑠𝑒 Daily max Daily max with reduction Ontario units 
 0.72397 0.14851 0.10408 0.117012 0.09903 0.122426 0.12367  
Fig. 9. Confusion matrix of classification results on the test set (20% of the training set 2020–2023) made by the two proposed soft voting classifiers.
Fig. 10. Cattell’s scree plot method applied with 25 PCs.
Fig. 11. Cumulative Percent of Variance (CPV) method applied with 25 PCs.
rise in the bitter acids content. Therefore, it is reasonable to assume 
that the first three samplings in 2021 and 2022 were carried out at 
the following three stages of hops’ growth: during developing (BBCH 
78–79); at the very beginning of the ripening process (BBCH 81–89); 
and, finally, at the optimal ripeness of the cone, once elongation had 
stopped (BBCH 89) (Rossbauer et al., 1995). In contrast, in 2023 no 
significant variations in cone length were observed across the three 
samplings, but for a decrease in width, generally occurs during the final 
12 
ripening stages when cones become increasingly compact until they 
close and are ready for harvest (BBCH 89) (Rossbauer et al., 1995).

3.5. Chemical analyses of Hop cones

Besides morphological characterization, hop cones were analyzed 
also in term of bitter acid content, with values from each sampling 
time reported in Table  15. In 2021, no significant variations in the 𝛼- 
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Fig. 12. Principal component (PC1) values prediction for test set (2023) by PCR.
Table 12
Performance (in terms of MAE, MSE and R2) of MLR on the 6 parameters of the test 
set data (2023).
 Parameter MAE MSE R2  
 Air average temperature 1.3498 3.1288 0.9477 
 Air maximum temperature 2.1733 8.0614 0.8980 
 Air minimum temperature 1.5197 3.6929 0.9251 
 Soil surface average temperature 0.2831 0.3653 0.9814 
 Soil surface maximum temperature 0.3618 0.4455 0.9778 
 Soil surface minimum temperature 0.2980 0.3829 0.9803 

Table 13
Performance (in terms of MAE, MSE and R2) of PCR applied on the 4 PCs identified 
in the test set data (2023).
 Principal Component MAE MSE R2  
 PC1 0.5933 0.6965 0.9316 
 PC2 0.2524 0.1158 0.8166 
 PC3 0.7288 0.9731 0.5650 
 PC4 0.7592 1.2031 0.6954 

Table 14
Morphological measurements of cones at different sampling times.
 Year Function Day Length [cm] Width [cm] 
 

2021 Training

08∕18 0.76 ± 0.06𝑐 0.56 ± 0.05𝑐  
 08∕23 1.81 ± 0.10𝑏 1.02 ± 0.03𝑏  
 08∕26 2.34 ± 0.07𝑎 1.20 ± 0.03𝑎  
 09∕03 2.61 ± 0.17𝑎 1.19 ± 0.04𝑎  
 09∕08 2.57 ± 0.11𝑎 1.20 ± 0.04𝑎  
 09∕15 2.75 ± 0.10𝑎 1.16 ± 0.03𝑎  
 

2022 Training

08∕08 0.76 ± 0.06𝑐 0.76 ± 0.05𝑑  
 08∕17 1.85 ± 0.09𝑏 1.02 ± 0.03𝑐  
 08∕26 2.34 ± 0.07𝑎 1.21 ± 0.03𝑏  
 09∕02 2.61 ± 0.17𝑎 1.20 ± 0.04𝑏  
 09∕08 2.56 ± 0.10𝑎 1.20 ± 0.03𝑏  
 09∕15 2.75 ± 0.10𝑎 1.17 ± 0.03𝑏  
 09∕21 2.53 ± 0.09𝑎 1.15 ± 0.02𝑏𝑐 
 09∕27 2.78 ± 0.08𝑎 1.43 ± 0.02𝑎  
 10∕05 2.45 ± 0.07𝑎 1.27 ± 0.03𝑏  
 
2023 Test

08∕24 2.35 ± 0.06𝑎 1.36 ± 0.02𝑎  
 09∕08 2.46 ± 0.09𝑎 1.12 ± 0.02𝑏  
 09∕15 2.63 ± 0.13𝑎 1.04 ± 0.02𝑐  
The data are reported in terms of mean ± standard error. Different letters indicate 
statistically significant differences at 𝑝 < 0.05 by Tukey’s test.

and 𝛽-acids contents were observed throughout the trial, with values 
ranging from 6.25 to 6.62 ppm and 5.93 to 6.64 ppm, respectively. 
In 2022, a significant rise in bitter acids content was found during the 
first three samplings, especially between the first two, when growths of 
more than 250% and 296% for the 𝛼- and 𝛽-acids content, respectively, 
13 
were observed. Such increases in both 𝛼- and 𝛽-acids are consistent 
with the cone size growth discussed above during the same period 
(Table  14), with similar findings reported by Kavalier et al. (2011). 
At the opposite, in 2023 a significant decline (𝑝 < 0.0001) in the 
𝛼-acids content across the samplings was observed, unlike in the 𝛽-
acids. The biosynthesis of 𝛼- and 𝛽-acids is affected by several external 
factors, with the environment playing a pivotal role in determining 
their concentration (Marceddu et al., 2022). Hot summer temperatures 
and low precipitations, as in summer 2023, have been ascribed as 
causes of reduction in the 𝛼-acids content in several studies (Mozny 
et al., 2009; Srečec et al., 2008; MacKinnon et al., 2020; Donner et al., 
2020; Marceddu et al., 2022). Srečec et al. (2008) found negative (𝑟 =
−0.39, 𝑝 < 0.05) and positive (𝑟 = 0.46, 𝑝 < 0.05) correlations between 
the average daily temperature and total rainfall with the production 
of 𝛼-acids, respectively. Similar negative (𝑟 = −0.78, 𝑝 < 0.01) and 
positive (r = 0.72, 𝑝 < 0.01) impacts of temperature and rainfall 
on the 𝛼-acids content were reported by MacKinnon et al. (2020); 
likewise, positive (𝑟 = 0.59 and 0.61) and negative (from −0.56 to 
−0.83) correlations between seasonal rainfalls and temperatures with 
the 𝛼-acids content were reported by Donner et al. (2020). However, 
despite the unfavorable weather conditions in summer 2023, the hops 
exhibited 𝛼-acid levels consistent with the average values for Italian 
hops in the same year (Barth Haas Hops Companion, 2024) and those 
typical of the Cascade variety (Haas, Inc., 2016). Typical 𝛼- and 𝛽-acid 
levels of the Cascade variety were also attained in 2021 and 2022, 
with slightly lower values in 2022, consistent with global trend (Barth 
Haas Hops Companion, 2023). Differences in the bitter acids content 
across different growing years in the same location are already reported 
by Matsui et al. (2016), who attribute these variations to weather 
conditions (temperature and rainfall).

As summarized in Table  16, the EO yields in all the experimental 
years (2021, 2022, and 2023) gradually increased during cone mat-
uration and reached, every year, their maximum values at the last 
samplings. Based on the hops growth patterns and accumulation of 
secondary metabolites, the optimal harvest window of Cascade cones 
grown in Northern Italy is in the first half of September. Our concentra-
tions of humulones and lupulones plateaued at the end of August and 
remained stable during the harvest window in agreement with Sharp 
et al. (2014). At the opposite, the oil content increased as a function 
of the harvest date as previously reported by several authors (Bailey 
et al., 2009; Sharp et al., 2014; Matsui et al., 2016; Lafontaine et al., 
2019). In particular, Bailey et al. (2009) study the influence of hop 
harvest date on hop aroma and observe, on average, a 30% rise in 
the oil content in 24 days. Similarly, Matsui et al. (2016) observe the 
impact of the harvest timing on the amount of essential oil and its 
composition in different years and locations. Likewise, Lafontaine et al. 
(2019) verify the impact of harvesting time on the essential oil content, 
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Table 15
Bitter acids content at different sampling times.
 Year Function Day 𝛼-acids 𝛽-acids  
 

2021 Training

08∕18 6.38 ± 0.49𝑎 5.93 ± 0.44𝑎  
 08∕23 6.33 ± 0.13𝑎 6.60 ± 0.47𝑎  
 08∕26 6.62 ± 0.13𝑎 6.62 ± 0.12𝑎  
 09∕03 6.40 ± 0.42𝑎 6.35 ± 0.48𝑎  
 09∕08 6.62 ± 0.04𝑎 6.41 ± 0.06𝑎  
 09∕15 6.25 ± 0.12𝑎 6.64 ± 0.13𝑎  
 

2022 Training

08∕08 0.97 ± 0.00𝑐 1.35 ± 0.06𝑐  
 08∕17 3.41 ± 0.35𝑏 5.35 ± 0.62𝑏  
 08∕26 5.55 ± 0.11𝑎 7.41 ± 0.17𝑎𝑏 
 09∕02 5.72 ± 0.14𝑎 7.48 ± 0.22𝑎𝑏 
 09∕08 5.18 ± 0.13𝑎 7.58 ± 0.20𝑎𝑏 
 09∕15 5.30 ± 0.75𝑎 7.82 ± 1.13𝑎  
 09∕21 4.30 ± 0.35𝑎𝑏 6.19 ± 0.50𝑎𝑏 
 09∕27 5.06 ± 0.47𝑎 5.52 ± 0.47𝑏  
 10∕05 5.06 ± 0.86𝑎 6.54 ± 0.86𝑎𝑏 
 
2023 Test

08∕24 7.22 ± 0.42𝑎 5.50 ± 0.42𝑎  
 09∕08 6.98 ± 0.14𝑏 5.62 ± 0.14𝑎  
 09∕15 3.79 ± 0.11𝑐 5.63 ± 0.11𝑎  
𝛼-acids and 𝛽-acids contents (%w/w on dry weight) are reported in terms of mean 
± standard deviation. Different letters indicate statistically significant differences at 
𝑝 < 0.05 by Tukey’s test.

Table 16
EOs yield at different samplings.
 Year Function Day EO yield [%] 
 

2021 Training

08∕18 0.38 ± 0.00𝑒  
 08∕23 0.82 ± 0.00𝑑  
 08∕26 1.39 ± 0.01𝑐  
 09∕03 1.89 ± 0.00𝑏  
 09∕08 1.95 ± 0.00𝑎𝑏  
 09∕15 2.05 ± 0.08𝑎  
 

2022 Training

08∕08 0.21 ± 0.02𝑑  
 08∕17 0.34 ± 0.01𝑑  
 08∕26 1.20 ± 0.03𝑐  
 09∕02 1.73 ± 0.39𝑏𝑐  
 09∕08 2.10 ± 0.00𝑏  
 09∕15 2.33 ± 0.11𝑎𝑏  
 09∕21 2.48 ± 0.04𝑎𝑏  
 09∕27 2.20 ± 0.28𝑎𝑏  
 10∕05 3.00 ± 0.35𝑎  
 
2023 Test

08∕24 1.11 ± 0.03𝑐  
 09∕08 1.86 ± 0.05𝑏  
 09∕15 1.99 ± 0.04𝑎  
The data are reported in terms of mean ± standard deviation. Different letters indicate 
statistically significant differences at 𝑝 < 0.05 by Tukey’s test.

reporting higher values at later harvest dates. However, despite the 
progressive increase of oils, it is crucial to avoid late harvests that 
might lead to decrease in cone yield and lupulin loss (Sharp et al., 
2014), as well as to the formation of sulfur analytes (dimethyl disulfide, 
S-methylthioisovalerate, and S-methylthiohexanoate), responsible for 
negative onion-garlic notes (Kammhuber et al., 2017). Furthermore, 
late harvest timings seem to be related to reductions in the concen-
trations of monoterpene diglycosides, which are important non-volatile 
aroma precursors (Lafontaine et al., 2021).

3.6. Algorithms’ harvesting period predictions

In order to test the ripeness prediction accuracy, the algorithms 
described in Section 2.7 were tested on the data of the 2024 season. In 
detail, the first algorithm was applied to predict the optimal harvest-
ing period: following the 60-day-ahead predictions of air temperature 
(average, maximum, minimum) and soil surface temperature (average, 
maximum, minimum) generated by MLR, the corresponding GDD val-
ues and the relative weeks, for all the predicted data, were calculated. 
Then, all these data were used as input for the soft voting classifier. 
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The predictions (from August 10, 2024) of the optimal harvest period 
in 2024 are shown in Fig.  13: the obtained results show that the 
period predicted by the first algorithm falls between September 2 and 
September 16, indicated in the plot by the green color.

Then, we also applied the second proposed algorithm, based on the 
PCA, to the 2024 data to find the optimal harvesting period. More in 
detail, following the 60-day-ahead predictions of the four PCs generated 
by the PCR, the predicted data have then been used as input for the 
soft voting classifier. The predicted optimal harvest period is shown in 
Fig.  14: it can be seen that the predicted optimal period falls between 
September 10 and September 25. In fact, during the 2024 season, the 
hop cones have been collected at their optimal maturity on Septem-
ber 15 when 𝛼- and 𝛽-acids contents were equal to 3.96 ± 0.13% and 
3.87±0.16%, respectively, while the EO yield was equal to 1.20±0.04%. 
Hence, as expected, the results for the EO yield agrees with the typical 
values for the Cascade variety at ripeness (Haas, Inc., 2016), unlike the 
bitter acids content that is slightly lower.

Finally, the performance of the considered algorithms, in term of 
accuracy, will have to consider climate change effects, especially in the 
case of extreme weather events — e.g., heat and drought as well as 
torrential rain — which pose a serious challenge to the hop industry, 
as they negatively affect both yield and quality (Barth Haas Hops 
Companion, 2024). In fact, according to Mozny et al. (2023), hop yield 
and 𝛼-acids content are predicted to decline by 4–18% and 20–31%, re-
spectively, by 2050, highlighting the urgent need for adaptive measures 
to safeguard the industry. Therefore, the assessment of the optimal 
cone ripeness becomes crucial to avoid further yield and quality losses. 
This further motivates the need to conduct analyses on the same 
variety under different climatic conditions and in different growing 
regions, which may affect crop production and quality (Acosta-Rangel 
et al., 2021; Rodolfi et al., 2019). Furthermore, the determination of 
optimal harvest time should be extended to other hop varieties, as they 
exhibit different maturation kinetics and, consequently, distinct harvest 
windows (Marceddu et al., 2020; Lafontaine et al., 2021).

4. Conclusions and future works

The approach proposed in this study aims at assessing the optimal 
hop harvesting period on the basis of real experimental data collected 
during the time period 2021–2023 at the ‘‘Azienda Agricola Ludovico 
Lucchi’’ in Campogalliano, Modena, Italy, mainly targeting to support 
farmers in achieving high yields of good quality.

More in detail, the proposed work considers two ML-based pre-
diction algorithms: (i) a first algorithm, based on the MLR features 
(namely, air temperature and soil surface temperature) strongly corre-
lated to the measured agronomic parameters; (ii) a second algorithm, 
based on PCA, which highlights that the input features’ space can be 
reduced to only 4 PCs, still accounting for over 75% of the total vari-
ance. Then, both algorithms have been integrated with a (subsequent) 
soft voting classifier trained over three ripening classes (immature,
mature, overripe) of hop growth period data. To this end, the cones were 
collected and, then, morphologically and chemically characterized ap-
proximately on a weekly basis for three growing seasons. Our results 
show a gradual increase in the EOs’ content and a reduction in the cone 
width during the first half of September, which can thus be considered 
the best harvest window for the Cascade variety under our experimental 
conditions. Both ML-based prediction algorithms presented in this study 
forecasted the optimal harvesting period in the 2024 season in the same 
days and were confirmed by the bitter acids’ content and EO yield. 
These results suggest the potential of AI-based prediction models in 
the identification of the optimal hop cone ripening period, providing 
a tool that can be used to support farmers in optimizing agricultural 
operations.

However, the proposed method is affected by some limitations. 
First, this analysis considers a single cultivar (Cascade), in a single field, 
with the same environmental conditions during the years. Moreover, 
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Fig. 13. Optimal harvesting period prediction by first proposed algorithm (MLR and soft voting classifier) from August 10, 2024.
Fig. 14. 2024 optimal harvesting period prediction by second proposed algorithm (PCR and soft voting classifier) from August 10, 2024.
Fig. SM1. Hop cones in different maturity stages (immature, mature, overripe).
the proposed approach is only based on ML-based algorithms, such as 
MLR and PCR: this choice was motivated by the fact that the limited 
dataset collected and used was not suitable to train more complex 
DL models, such as ANN or 𝑘-NN. In the presence of richer datasets, 
the proposed approach could exploit DL models applied to different 
hop varieties (e.g., Columbus, Comet, Chinook, Lotus) and environmental 
conditions. As an example, finer and more frequent data sampling — 
e.g., taking measurements every hour, or even every 10 min, thanks 
15 
to the employed IoT devices — could be used to implement new DL 
models. 

Future research activities may include the collection and integration 
of new types of information to improve both prediction and classi-
fication tasks. Moreover, a larger number of classes — e.g., adding 
the pre-mature and early post-mature classes to the already considered 
classes — may be expedient to refine the classifiers and narrow the 
optimal harvesting period. Finally, the integration of images captured 



G. Oddi et al. Computers and Electronics in Agriculture 239 (2025) 110830 
by smart cameras may generate new information strictly correlated 
with plant growth and maturity, useful to estimate morphological 
parameters such as cone height and length. Another relevant activity 
that can be evaluated as a future research direction would be the 
definition of a novel Hop Harvesting Index (HHI), which may provide a 
comprehensive metric for the calculation of the harvesting period and 
hop cone maturation based on available IoT sensory information. The 
HHI could guide the farmers during harvesting operations.
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Appendix. Supplementary materials

This section contains supplementary material that expands on the 
data and analyses discussed in the main text. These include an addi-
tional figure that visually illustrate the three utilized maturity stages of 
a hop cone, namely, immature, mature, overripe.
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Data availability
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